Dehydration of Glucose to 5‐Hydroxymethylfurfural Using Nb‐doped Tungstite

نویسندگان

  • Chaochao Yue
  • Guanna Li
  • Evgeny A. Pidko
  • Jan J. Wiesfeld
  • Marcello Rigutto
  • Emiel J. M. Hensen
چکیده

Dehydration of glucose to 5-hydroxymethylfurfural (HMF) remains a significant problem in the context of the valorization of lignocellulosic biomass. Hydrolysis of WCl6 and NbCl5 leads to precipitation of Nb-containing tungstite (WO3 ⋅H2 O) at low Nb content and mixtures of tungstite and niobic acid at higher Nb content. Tungstite is a promising catalyst for the dehydration of glucose to HMF. Compared with Nb2 O5 , fewer by-products are formed because of the low Brønsted acidity of the (mixed) oxides. In water, an optimum yield of HMF was obtained for Nb-W oxides with low Nb content owing to balanced Lewis and Brønsted acidity. In THF/water, the strong Lewis acidity and weak Brønsted acidity caused the reaction to proceed through isomerization to fructose and dehydration of fructose to a partially dehydrated intermediate, which was identified by LC-ESI-MS. The addition of HCl to the reaction mixture resulted in rapid dehydration of this intermediate to HMF. The HMF yield obtained in this way was approximately 56 % for all tungstite catalysts. Density functional theory calculations show that the Lewis acid centers on the tungstite surface can isomerize glucose into fructose. Substitution of W by Nb lowers the overall activation barrier for glucose isomerization by stabilizing the deprotonated glucose adsorbate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nb2O5-γ-Al2O3 nanofibers as heterogeneous catalysts for efficient conversion of glucose to 5-hydroxymethylfurfural

One-dimensional γ-Al2O3 nanofibers were modified with Nb2O5 to be used as an efficient heterogeneous catalyst to catalyze biomass into 5-hydroxymethylfurfural (5-HMF). At low Nb2O5 loading, the niobia species were well dispersed on γ-Al2O3 nanofiber through Nb-O-Al bridge bonds. The interaction between Nb2O5 precursor and γ-Al2O3 nanofiber results in the niobia species with strong Lewis acid si...

متن کامل

Direct Transformation of Fructose and Glucose to 5- Hydroxymethylfurfural in Ionic Liquids under Mild Conditions

Direct dehydration of fructose and glucose to 5-hydroxymethylfurfural (5HMF) was studied using ionic liquids (ILs) without adding any catalysts. Various ILs were screened, and the highest 5-HMF yield of 95.6% was obtained using 1-butyl-3-methylimidazolium tosylate ([BMIM][TSO]) at 353 K for 30 min. Proton nuclear magnetic resonance (H NMR) spectra confirmed that the sulfonate hydrolysates of an...

متن کامل

Conversion of Glucose into HMF Catalyzed by CPL- LiCl Investigated using Dual-Wavelength UV Spectrophotometry

The process of dehydration of glucose to 5-hydroxymethylfurfural (HMF), using caprolactam-lithium chloride (CPL/LiCl) as a solvent, was investigated. Dual-wavelength ultraviolet spectrophotometry provides a new approach for the determination of glucose conversion rate and yield of HMF. Experiments were performed to demonstrate the accuracy and precision of this method. Various reaction paramete...

متن کامل

Integrated chemo-enzymatic production of 5-hydroxymethylfurfural from glucose.

Sweets for my sweet: The production and isolation of 5-hydroxymethylfurfural (HMF) in high yield and purity is demonstrated by using a combination of glucose-fructose isomerization with sweetzyme in wet tetraethylammonium bromide (TEAB) and clean fructose dehydration to HMF catalyzed by using HNO₃ under moderate conditions, which allow the reuse of any unreacted glucose and TEAB.

متن کامل

A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides.

5-Hydroxymethylfurfural (HMF), one of the most important intermediates derived from biomass, was directly produced from monosaccharides (fructose and glucose) and disaccharides (sucrose and cellobiose) by a simple one-pot reaction including hydrolysis, isomerization and dehydration using solid acid and base catalysts under mild conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016